
Silicon Carbide Power Technology for Energy **Eficient Devices**

PROJECT DETAILS

Funding Programme: 7th Framework Programme

Sub-Programme:

Nanosciences,

nanotechnologies, materials and new production

technologies (NMP) Funding Scheme:

Large-scale integrating project

Project Reference:

604057; UE-14-SPEED-604057

Project Duration:

48 Months (from 2014-01-01 to

Total Project Value:

€ 18.585.983

EU Grant-Aid:

€ 12.297.781

Funding to UniOvi:

€ 698.572'80

Website:

http://cordis.europa.eu/projects /rcn/111073_en.html

PROJECT DESCRIPTION

Highly efficient Power Electronics (PE) employed in power generation, transmission, and distribution is the prerequisite for the Europe-wide penetration of renewable energies; improves the energy efficiency; increases the power quality and enables continuous voltage regulation, reactive power compensation and automated distribution. It also facilitates the integration of distributed resources like local energy storages, photovoltaic generators, and plug-in electric vehicles.

The development of a new generation of high power semiconductor devices, able to operate above 10kV, is crucial for reducing the cost of PE in the above-mentioned applications. The material properties of SiC, clearly superior to those of Si, will lead to enhanced power devices with much better performance than conventional Si devices. However, today's SiC PE performs rather poorly compared to the predictions and the production costs are by far too high.

Pooling world-leading manufacturers and researchers. SPEED aims at a breakthrough in SiC technology along the whole supply chain:

- Growth of SiC substrates and epitaxial-layers.
- Fabrication of power devices in the 1.7/>10kV range.
- Packaging and reliability testing.
- SiC-based highly efficient power conversion cells.
- Real-life applications and field-tests in close cooperation with two market-leading manu-facturers of high-voltage (HV) devices.

Known and new methodologies will be adapted to SiC devices and optimized to make them a practical reality. The main targets are cost-savings and superior power quality using more efficient power converters that exploit the reduced power losses of SiC. To this end, suitable SiC substrates, epitaxial-layers, and HV devices shall be developed and eventually be implemented in two demonstrators:

- A cost-efficient solid-state transformer to support advanced grid smartness and power quality.
- A windmill power converter with improved capabilities for generating AC and DC power.

PROJECT PARTNERS

Project Coordinator Inael Electrical Systems, S.A., Spain

Germany

Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V. Gottfried Wilhelm Leibniz Universitaet Hannover Technische Universitaet Muenchen

(TUM) Universitaet Bremen Infineon Technologies AG

Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Oviedo

Ingeteam Power Technology, S.A. United Kingdom

The University of Nottingham

Austria Infineon Technologies Austria AG

Switzerland

ABB Schweiz AG

France

Annealsys SAS

Italy

Enel Distribuzione S.p.A.

Sweden

Norstel AB

Ascatron AB

Czech Republic

Ceské Vysoké Uceni Technické v Praze

UNIOVI TEAM

Fernando Briz del Blanco 1 fbriz@uniovi.es Francisco Javier Sebastián Zúñiga 1 sebas@uniovi.es Marta María Hernando Álvarez 1 mmhernando@uniovi.es Alberto Benjamín Díez

González 1

abdiez@uniovi.es

Diego González Lamar 1 gonzalezdiego@uniovi.es Juan Manuel Guerrero Muñóz 1

guerrero@uniovi.es

David Díaz Reigosa 1 diazdavid@uniovi.es

Department of Electrical, Electronic, Computers and Systems Engineering

